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Introduction
ECMWF implemented 3D-Var in January 1996 — nearly 20 years ago.

Since then, a lot has happened...

4D-Var (in November 1997)

Several changes of horizontal and vertical resolution

A big increase in the number an types of observations assimilated

Improvements to model physics, including to the TL & adjoint models

Better modelling of observation errors and biases, including:
I Variational bias correction
I Variational quality control

Modelling of model bias (weak constraint 4D-Var)

Better modelling of background error
I Wavelet Jb
I Flow-dependent covariances derived from an Ensemble of Data

Assimilations (EDA)

etc. etc. etc.
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Introduction

As a result of all these changes, forecasts have gained almost 2 days of
predictability compared with those of 20 years ago.

We can get an idea of how much of this improvement came from
improvements in the observing system by comparing with a frozen
(reanalysis) system.
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Operational System versus Reanalysis
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Introduction

It is difficult to separate the impact of improvements in the model from
improvements in the data assimilation system, since the model is a
component of the DA system.

But, it is clear that reduction in initial-state error is the main contributor
to the improvement in forecast skill.
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Introduction
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Introduction

Model Forecast  (with errors) Observations (with errors)

Computer (with a 
lot of CPUs) 

People 
(with a lot 

of good 
ideas) 

Analysis (with - smaller – errors)
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Introduction

  

Good ideas that work
out in practice

Ideas that don't
work out (but we
learn something)

Stupid ideas

Bad ideas
Other people's ideas
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Some good ideas that worked out in practice

It would be impossible to cover all the good ideas that have contributed to
the improvement in forecast skill over the last 20 years.

Instead, I have picked a few examples with which I have been personally
involved, or which I find particularly interesting:

The Derber-Bouttier Jb

Wavelet covariance model for background errors

Huber norm quality control
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Derber-Bouttier Jb
When 3D-Var was first implemented at ECMWF, the background
covariance model was based on a normal model decomposition:

It was rather complicated, and did not work particularly well.

In particular, it did not give good results in the tropics, and there were
problems with the tides.
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Derber-Bouttier Jb

Derber and Bouttier (1997) simplified the background covariance model to:

Jb =
1

2
χχT

where x = xb + B1/2χ

The new formulation was cheaper (4 times fewer spectral transforms),
simpler, and more elegant than the old scheme.

It also produced a better-conditioned minimization problem.
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Derber-Bouttier Jb

The clever part of the Derber-Bouttier scheme was the choice of a control
variable and a balance operator that gave up gracefully in the tropics:

χbal
B

1/2
ζ−−−→ ζbal

“linear balance”−−−−−−−−−−−−→ Φbal
regression−−−−−−−→ (Tbal, pbal)

Because of the way f appears in the linear balance equation, Φbal −→ 0 in
the tropics.

This avoids imposing inappropriate balances in the tropics.

(An inability to “fail gracefully” in the tropics would stymie later attempts
to develop a potential-vorticity based balance operator for Jb.)
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Derber-Bouttier Jb

The use of regression to compute (Tbal, pbal) takes into account that
Φbal is not the true geopotential, but a diagnostic quantity derived from
the vorticity field.

It also neatly sidesteps the fact that the analytical hydrostatic equation is
not invertible for the vertical grid staggering used in the ECMWF model.

Overall, the Derber-Bouttier covariance model is a good example of the
KISS2 principle.

The impact on forecast scores (particularly in the tropics) was dramatic.

2Keep It Simple, Stupid
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Derber-Bouttier Jb

from Derber and Bouttier 1997, ECMWF Technical Memorandum 238
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Derber-Bouttier Jb

from Derber and Bouttier 1997, ECMWF Technical Memorandum 238
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Wavelet Covariance Model
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determined in part by the statistics of the “unbalanced”
component, and in part by the statistics of the vorticity
error. In mid-latitudes, the balanced component is dominant,
and the correlations of temperature error are effectively
those implied through the balance equations by the vortic-
ity correlations. In the tropics, by contrast, the residual
components dominate, and the correlations are those
prescribed for the “unbalanced” components.The result is
that the implied temperature statistics vary with latitude.

Horizontal correlations are handled in the Derber-Bouttier
Jb using “convolution”.To create a horizontally-correlated
field (e.g. vorticity on some model level), each horizontal
grid-point of the field is calculated as a weighted average of
the values of the control vector at nearby points.The weight
given to each point is a function of distance from the central
grid-point. A typical weighting function for vorticity is
shown in Figure 2.

This type of averaging is used because it can be imple-
mented very efficiently using spherical transforms. Specifically,
convolution of a field with a function of distance f (such as
that shown in Figure 2) can be achieved by multiplying the
spectral coefficients of the field by coefficients f̂ n that depend
only on the wavenumber n.There is a simple mathematical
relationship between the coefficients f̂ n and the function f.

spectral representation of the tune would identify the frequen-
cies present, but would not identify when these frequencies
appear.This is illustrated schematically by the graph to the
left of the musical stave, showing amplitude as a function of
frequency. By contrast, a purely temporal representation
would identify the time at which each note is played and its
loudness, but not the frequency, as illustrated by the graph
below the stave. Clearly, neither the spectral nor the tempo-
ral representations capture the full nature of the music.

If we now replace time by spatial position, and frequency
by spatial scale, we have rough analogues of two approaches
to covariance modelling. The purely spectral approach, as
exemplified by the Derber-Bouttier Jb, identifies vertical
correlations as a function of scale, but does not identify
where the correlations apply. It is like the spectral represen-
tation of the melody to the left of the stave.An alternative
(separable) approach is to specify vertical correlations as a
function of horizontal position, and apply them to columns
of the model’s grid.This provides spatial information, but
applies the same correlations to all scales, rather in the way
that the temporal description of the melody fails to iden-
tify the pitches of the notes. It is clear that, as with the
musical example, neither the purely spectral nor the purely
spatial approach captures all the characteristics of the corre-
lations.What is needed is an equivalent of musical notation
that identifies correlations as a function of both scale and
location.This is the aim of “Wavelet” Jb.

“Wavelet” Jb

Have another look at Figure 1.The variation of vertical corre-
lation with wavenumber is rather smooth, yet the Derber-
Bouttier Jb describes this spectral variation with individual
matrices for each of the 256 wavenumbers of the T255
truncation.Horizontal correlations, too, are described by 256
spectral coefficients per model level, despite being smooth
functions of wavenumber.

The first step towards “Wavelet” Jb is to realise that both
the vertical and horizontal correlations may be described
fairly accurately by specifying matrices and coefficients for
a few selected wavenumbers, and simply interpolating
between them. One way to do this would be to generate the
256 matrices and 256 coefficients required by the Derber-
Bouttier Jb explicitly from the matrices and coefficients for
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Figure 2 Mean horizontal correlation of vorticity at model level 49
(near 850 hPa) as a function of distance.
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Figure 3 An illustration of the benefits of resolving both temporal and spectral information.

The disadvantages of this approach
are first that the weighting function, f,
cannot be varied from grid-point to
grid-point, so that spatial variation of
horizontal correlation is not allowed,and
second that the averaging is isotropic
(the same in all horizontal directions).

Musical interlude

By now, you must be wondering when
I’m going to get round to talking about
wavelets. I’ll get there soon. But first,
a little music.

Consider the snippet of a well-
known tune shown in Figure 3.A purely
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ground cost to be evaluated quickly and simply as the sum
of the squares of the elements of the transformed vector
(called the “control vector”). From the statistical point of view,
the transformation makes the elements of the control vector
statistically independent (i.e. their errors are uncorrelated)
and with a variance of one.

From the practical point of view, expressing the analysis
problem in terms of the control vector has an important
“preconditioning” effect. That is, the minimization algo-
rithm is able to locate the minimum of the cost function
much more rapidly when the function is expressed in terms
of the control vector, than when it is expressed directly in
terms of the “raw” model variables. During the course of
the minimization, the control vector must be converted
into equivalent values of the model variables so that, for
example, they may be compared with observations.However,
it is never necessary to perform the reverse transformation
that converts model variables to a control vector.

In a variational analysis system, constructing a background
covariance model boils down to specifying a transformation
that converts a control vector of statistically independent,unit-
variance elements, into model fields with the statistical
structure of background error.This transformation implic-
itly defines the covariance matrix of background error,which
is never explicitly represented. Before considering in more
detail how such a transformation may be defined, let’s consider
which characteristics of background error we wish to retain
in the model.

Some important characteristics of
background error

Perhaps the most important characteristic of background
error is that it tends to be balanced.That is, errors in temper-
ature, surface pressure and wind are related to each other via

geostrophic and hydrostatic balances.The Derber & Bouttier
(1999) approach to accounting for balance is to express the
control vector in terms of a single “balanced” variable, and
a number of residual, “unbalanced” variables. They chose
vorticity as the balanced variable.With this approach, the last
step of the transformation from control vector to model fields
is to calculate balanced components of other variables from
the vorticity (using geostrophy, for example) and add them
to the residual components. It is assumed that this process
accounts for all the correlations between variables, so that
the different variables of the control vector are assumed to
be statistically independent.This approach to representing
balance has been retained for “Wavelet”Jb.

A second important characteristic of background error
is “non-separability”. This simply means the tendency for
broad horizontal error structures to be deep, and for narrow
horizontal structures to be shallow.This property is illustrated
in Figure 1, which shows the mean vertical correlation
between temperature background errors at model level 49
(near 850 hPa) and temperature errors at other levels.The
horizontal axis shows spherical wavenumber n: a measure of
horizontal scale, with small scales corresponding to large
values of n.

One important reason for wanting to retain non-separa-
bility in the covariance model is its interaction with balance.
The strict, functional relationship between the balanced
components of background error (e.g. between vorticity
and the balanced part of the temperature error) means that
specifying a covariance model for one variable (vorticity, say)
implicity imposes a covariance model on other variables. It
has been found that a separable model, in which all hori-
zontal scales have the same vertical correlation, is unable
simultaneously to represent the correlations of both wind
and temperature (see Bartello & Mitchell, 1992).

A third feature of background error correlation is spatial
variation.We expect background error correlations to vary
geographically. Tropical error structures are different from
those in mid-latitudes, and errors over data-dense regions
are different from those over data-sparse regions.

The Derber-Bouttier Jb

The background covariance model devised by Derber &
Bouttier (1999) (hereafter referred to as the “Derber-Bouttier
Jb”) was used operationally at ECMWF from May 1997 until
April 2005, and had a very positive impact on forecast skill.
It attempts to capture the first two properties described
above: balance and non-separability. It also achieves a limited
degree of spatial variability.

The treatment of balance has already been described.
Non-separability is addressed by having different vertical
correlation matrices for each spherical wavenumber.Because
wavenumber is a global concept, this approach does not
allow any horizontal variation of the correlations. However,
this is only true of the variables that make up the control
vector (vorticity,“unbalanced” temperature, etc.). Since the
full temperature and surface pressure fields are calculated as
the sum of an “unbalanced” residual and balanced fields
derived from the vorticity, their covariance structure is
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Figure 1 Mean correlation between background errors of temper-
ature on model level 49 (near 850 hPa) and the corresponding errors
on other model levels, as a function of spherical wave number.
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Wavelet Covariance Model

BONAVITA, M.:  ENSEMBLE DATA ASSIMILATION AND UNCERTAINTY ESTIMATION 

154 ECMWF Seminar on Data assimilation for atmosphere and ocean, 6-9 September 2011 

 

 
Figure 13: EDA estimate of surface pressure background error standard deviation (shaded 
contours, left panel) and EDA estimate of background error correlation length scale (shaded 
contours, right panel) in the area affected by hurricane Fanele. Plots are derived from a 20 
member EDA, valid on 20 January 2009 at 09 UTC. Mean Sea Level Pressure contours (4 hPa 
interval) are superimposed. 

 

 

 
 

Figure 14: EDA estimate of surface pressure background error standard deviation (shaded 
contours, left panel) and EDA estimate of background error correlation length scale (shaded 
contours, right panel) in the area affected by hurricane Fanele. Plots are derived from a 50 
member EDA, valid on 20 January 2009 at 09 UTC. Mean Sea Level Pressure contours (4 hPa 
interval) are superimposed. 

 

 

Bonavita 2011, proc ECMWF Seminar on Data Assimilation
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Wavelet Covariance Model

The spherical harmonics for a single wavenumber n have amplitude
everywhere, so a covariance model that specifies vertical covariances for
each n has no possibility for modelling the spatial variation of covariance.

Conversely, specifying the covariances at each gridpoint does not allow any
variation of covariance with wavenumber.

The idea of the wavelet covariance model is to trade off some spectral
resolution in exchange for some spatial resolution.

The result is a better model for the covariances, in the same way that the
musical score describes the tune better than a list of frequencies (with no
indication when they are to be played) or a list of times (with no
indication which note is to be played).
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determined in part by the statistics of the “unbalanced”
component, and in part by the statistics of the vorticity
error. In mid-latitudes, the balanced component is dominant,
and the correlations of temperature error are effectively
those implied through the balance equations by the vortic-
ity correlations. In the tropics, by contrast, the residual
components dominate, and the correlations are those
prescribed for the “unbalanced” components.The result is
that the implied temperature statistics vary with latitude.

Horizontal correlations are handled in the Derber-Bouttier
Jb using “convolution”.To create a horizontally-correlated
field (e.g. vorticity on some model level), each horizontal
grid-point of the field is calculated as a weighted average of
the values of the control vector at nearby points.The weight
given to each point is a function of distance from the central
grid-point. A typical weighting function for vorticity is
shown in Figure 2.

This type of averaging is used because it can be imple-
mented very efficiently using spherical transforms. Specifically,
convolution of a field with a function of distance f (such as
that shown in Figure 2) can be achieved by multiplying the
spectral coefficients of the field by coefficients f̂ n that depend
only on the wavenumber n.There is a simple mathematical
relationship between the coefficients f̂ n and the function f.

spectral representation of the tune would identify the frequen-
cies present, but would not identify when these frequencies
appear.This is illustrated schematically by the graph to the
left of the musical stave, showing amplitude as a function of
frequency. By contrast, a purely temporal representation
would identify the time at which each note is played and its
loudness, but not the frequency, as illustrated by the graph
below the stave. Clearly, neither the spectral nor the tempo-
ral representations capture the full nature of the music.

If we now replace time by spatial position, and frequency
by spatial scale, we have rough analogues of two approaches
to covariance modelling. The purely spectral approach, as
exemplified by the Derber-Bouttier Jb, identifies vertical
correlations as a function of scale, but does not identify
where the correlations apply. It is like the spectral represen-
tation of the melody to the left of the stave.An alternative
(separable) approach is to specify vertical correlations as a
function of horizontal position, and apply them to columns
of the model’s grid.This provides spatial information, but
applies the same correlations to all scales, rather in the way
that the temporal description of the melody fails to iden-
tify the pitches of the notes. It is clear that, as with the
musical example, neither the purely spectral nor the purely
spatial approach captures all the characteristics of the corre-
lations.What is needed is an equivalent of musical notation
that identifies correlations as a function of both scale and
location.This is the aim of “Wavelet” Jb.

“Wavelet” Jb

Have another look at Figure 1.The variation of vertical corre-
lation with wavenumber is rather smooth, yet the Derber-
Bouttier Jb describes this spectral variation with individual
matrices for each of the 256 wavenumbers of the T255
truncation.Horizontal correlations, too, are described by 256
spectral coefficients per model level, despite being smooth
functions of wavenumber.

The first step towards “Wavelet” Jb is to realise that both
the vertical and horizontal correlations may be described
fairly accurately by specifying matrices and coefficients for
a few selected wavenumbers, and simply interpolating
between them. One way to do this would be to generate the
256 matrices and 256 coefficients required by the Derber-
Bouttier Jb explicitly from the matrices and coefficients for
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Figure 2 Mean horizontal correlation of vorticity at model level 49
(near 850 hPa) as a function of distance.
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Figure 3 An illustration of the benefits of resolving both temporal and spectral information.

The disadvantages of this approach
are first that the weighting function, f,
cannot be varied from grid-point to
grid-point, so that spatial variation of
horizontal correlation is not allowed,and
second that the averaging is isotropic
(the same in all horizontal directions).

Musical interlude

By now, you must be wondering when
I’m going to get round to talking about
wavelets. I’ll get there soon. But first,
a little music.

Consider the snippet of a well-
known tune shown in Figure 3.A purely
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the selected wavenumbers, and then proceed as before.This
does not gain us much, except to provide a more compact
description of the statistics. However, there is a different way
to perform the interpolation, as described below.

The Derber-Bouttier Jb identifies horizontal scale using
wavenumber, n, and there is a separate part of the control
vector for each n. “Wavelet”Jb does things differently. It
identifies horizontal scale with overlapping bands of
wavenumbers centred on each of the selected wavenumbers
to be interpolated. There is a separate part of the control
vector for each band, and each part is assumed to be uncor-
related with other parts of the control vector. Because the
wavenumber bands overlap, each wavenumber is represented
in two or more different parts of the control vector, corre-
sponding to two or more different bands.To construct the
model background-departures for a particular wavenumber
from the control vector, we multiply the corresponding
wavenumber coefficients in each part of the control vector
by the matrix and coefficient defined for the band.We then
multiply each contribution to the wavenumber by a weight,
and add the resulting values.The weights define the inter-
polation in wavenumber between the matrices and
coefficients defined for the central wavenumbers of each
band.The effect is identical to what we would have achieved
by first interpolating the matrices and coefficients, and then
applying the Derber-Bouttier Jb.

The weighting functions used in the current imple-
mentation of “Wavelet” Jb are shown in Figure 4. Four
arbitrarily-chosen functions have been highlighted. The
functions are, in fact, the square roots of triangular func-
tions, and produce a linear interpolation of covariance
between the wavenumber bands.

Now, the weighting functions are functions of wavenum-
ber, n, and as described earlier, multiplication by a function
of n is equivalent to convolution with a particular spatial func-
tion.Each point of the convolved field corresponds to a spatial
average of nearby points.

Figure 5 shows the spatial averaging functions implied by
the spectral functions highlighted in Figure 4. Note that the

functions are quite localised, especially for the higher
wavenumber bands.

Consider now what happens if we allow the matrices and
coefficients that define the correlations to vary with latitude
and longitude. For example, suppose we use different matri-
ces and coefficients for points over North America than we
do for points over Europe. For all but the lowest wavenum-
bers (corresponding to planetary scales) the spatial averaging
functions for points over Europe give nearly zero weight to
points over North America, and vice versa. So, the correla-
tions in effect over Europe will essentially be those we
would have got had we used the European correlations and
coefficients everywhere. Likewise, the correlations over
North America will effectively be those defined by the
correlations and coefficients we specify for North America.
In other words,we have succeeded in introducing spatial vari-
ation into the correlation statistics,while retaining the ability
to describe their spectral variation.To return to the analogy
of the previous section, we might say that we have improved
on the constant drone of the Derber-Bouttier Jb and the
drum-solo of the separable formulation, and produced a
background covariance model that can represent the full
“music” of the background error covariances! Some exam-
ples of the ability of “Wavelet” Jb to produce spatially-varying
correlation structures are given in Fisher (2004a) and Fisher
(2004b).

Why call this “Wavelet” Jb?

The term “wavelet” describes a particular class of mathemat-
ical functions that are localised in both space and frequency.
These functions have become quite popular in recent years
for analysing problems for which a purely spectral or a
purely spatial (or temporal) approach is insufficient.
Applications include image compression, signal analysis and
linear algebra.

Although the exact definition of what constitutes a
“wavelet” varied a little after their introduction in the 1980’s,
it is now generally accepted that the term should be restricted
to functions that have the mathematical property of orthog-
onality.The weighting functions used in “Wavelet” Jb do not
have this property, for reasons explained in Fisher (2004b),
and should not strictly be called “wavelets”. Nevertheless,
the term neatly sums up the most important property of the
functions, which is their simultaneous localization in both
wavenumber and space. Some other properties of orthogo-
nal wavelets, such as the ability to define transforms, also apply
(see Fisher, 2004b), making the distinction between true
wavelets and the functions described here somewhat tech-
nical. Since the term “Wavelet” Jb is also much snappier than
any more precise alternative, I have chosen to use it, and to
indicate its inexactness with inverted commas.

Practical issues

Astute readers will have noted that the need to represent each
wavenumber in more than one band results in some redun-
dancy. (This can be regarded as a consequence of the lack
of orthogonality between the weighting functions.) A prac-
tical consequence is that the control vector must be larger
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Figure 4 Weighting functions for the different wavenumber bands
in “Wavelet” Jb. The coloured curves are referred to in Figure 5.
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than the corresponding vector of model
variables. Although the size of the
control vector is not directly related to
the computational cost of the mini-
mization, it is nevertheless a good idea
to reduce its size as much as possible.
In the current implementation,we take
advantage of the fact that each of the
weighting functions is exactly zero
outside its band, and store the corre-
sponding part of the control vector on
a grid appropriate to its spectral trun-
cation. In the current implementation,
the total dimension of the control
vector is approximately three times the
dimension of a grid-space representa-
tion of the model variables.

The storage required for the vertical
correlation matrices is potentially huge.
In principle, we could define a differ-
ent matrix for each grid-point and for
each band of wavenumbers. This is
completely impractical, and would also
require an enormous sample of back-
ground errors to generate stable statistics.
To reduce the storage requirements, the
matrices are stored on a lower resolu-
tion grid than the parts of the control
vectors, with a maximum resolution
(for higher wavenumber bands) of
5°×5°.This still results in statistics files
that are uncomfortably large (a few giga-
bytes). Further ways to reduce their size
will be investigated in the future.

model is to propagate this information between analysis
cycles. But, what would happen if the analysis could simul-
taneously take into account all the observations over a
five-to-ten day period? In this case, there would be no need
to propagate information between cycles, and a background
covariance model would be unnecessary.A 4D-Var analysis
system of this sort, applied to a simple, low-dimension model
of mid-latitude dynamics has been examined (Fisher, 2006).
The analysis produced by this 4D-Var system is as good as
that produced by a full extended Kalman filter. It is likely
that attempts to make the background covariance model less
important, by increasing the length of the analysis window,
have even more potential to improve the analysis than
attempts to improve the covariance model itself.

FURTHER READING

Bartello, P. & H.L Mitchell, 1992:A continuous three-dimension-
al model of short-range forecast error covariances, Tellus, 44A,
217–235.

Cardinali, C., S. Pezzulli & E. Anderson, 2004: Influence-matrix
diagnostic of a data assimilation system. Q.J.R. Meteorol. Soc., 130,
2767–2786.
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Figure 5 The spatial weighting functions corresponding to the functions of wavenumber
highlighted in Figure 4, for a point over the Irish Sea. Red and blue contours represent posi-
tive and negative weights. The zero line is not plotted. Plots (a), (b), (c) and (d) refer to
the red, green, blue and black curves of Figure 4.

Where next?

In conclusion, “Wavelet” Jb provides an elegant way of
encapsulating in the covariance model an important prop-
erty of the statistics of background error, that was not
captured by its predecessor.There remain important prop-
erties that are not represented, such as the day-to-day
variability of background error correlation, and the tendency
for error structures to be strongly anisotropic (i.e. functions
of direction as well as distance) and to tilt in the vertical.
There is a range of possibilities that could be explored to
address these issues, each of which captures some or other
aspect of background error covariance. But, whatever
approach is taken, it is impossible to escape the fact that the
covariance model is a distillation of a vast matrix into a rela-
tively small number of parameters. It is inevitable with any
distillation that some of the “spirit” is lost, in this case to the
detriment of the analysis.

Ultimately, the only way to produce a truly optimal
analysis system is to eliminate the dependence of the analy-
sis on a background error covariance matrix. I noted earlier
that any given analysis can be regarded as a synthesis of
observational information over a period of five-to-ten days,
and that the function of the background error covariance

Fisher 2006, ECMWF Newsletter 106
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Wavelet Covariance Model

The wavelet covariance model allows us to specify vertical covariances that
vary geographically, while retaining non-separability (i.e. that large/small
horizontal scales correspond to deep/shallow vertical correlations).

By assigning different variances to each waveband, we can control the
horizontal covariances, and allow them to vary spatially.

When originally introduced, we were only able to capture climatological
spatial variation.

Now, we we can fully exploit the potential of the wavelet formulation by
using an Ensemble of Data Assimilations to construct a flow-dependent
covariance model.
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Huber norm quality control

DA Training Course 2014

Tuning the rejection limit

The left histogram on the left has been 
transformed into the right histogram such 
that the Gaussian part appears as a pair of 
straight lines forming a ‘V’ at zero.
The slope of the lines gives the standard 
deviation of the Gaussian.

The rejection limit can be chosen 
to be where the actual distribution 
is some distance away from the ‘V’ 
- around 6 to 7 K in this case, 
would be appropriate. 

12
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Huber norm quality control

The theory of variational quality control was well known (Lorenc and
Hammon 1988; Lorenc and Ingleby 1993).

The idea is to replace the Gaussian observation error statistics with
something that better describes the true statistics of model error (and, in
particular, takes into account the fact that outliers are more likely than a
Gaussian model would suggest).

VarQC was implemented in the ECMWF system (Andersson and Jarvinen
1999).

In principle, all that is required is to specify the correct (non-Gaussian)
observation error statistics, and 4D-Var will weight the observations
correctly.

In practice, there were occasions when large numbers of mutually
supporting observations were rejected.
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Huber norm quality control

DA Training Course 2014

27 Dec 1999 – French storm 18UTC

963.5 hPa (supported by 
neighbouring stations)

At this station the analysis 
shows 977 hPa

Analysis wrong by 16.5 hPa!

 High density of good quality 
surface data for this case

 Era interim analysis produced a low with min 970 hPa

 Lowest pressure observation (SYNOP: red circle)

19
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Huber norm quality control
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Huber norm quality control

Most observation errors look like this:

But, occasionally we get gross errors (when anything is possible):

p(obs error) = A× pnormal + (1− A)× pgross
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Huber norm quality control

This error model seems entirely reasonable, so why does it allow large
numbers of mutually supporting observations to be rejected?

The problem is that the quality control is too ”binary”.

Observations outside the acceptance region are given zero weight, even if
there are many of them.

By giving such observations a reduced (but non-zero) weight, we allow
rejected observations to have a small influence on the analysis.

If there are several such observations, their small weights will add up to a
large influence on the analysis.
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Huber norm quality control

On the use of a Huber norm for observation quality control in the ECMWF 4D-Var

1.2
b

a

1

0.8

W
e

ig
h

t

0.6

0.4

0.2

0

40

30

C
o

st
 F

u
n

ct
io

n

20

10

0

Normalised background departures
0–2–6 –4 42 6

Normalised background departures
0–2–6 –4 42 6

Figure 5: Observation cost functions (a) and the corresponding weights (b) after applying the variational QC.
Solid: Huber norm distribution, dashed: ”Gaussian plus flat” distribution, and dash-dot: Gaussian distribution.

This defines how much the influence of the observation is reduced compared to the influence based
on a pure Gaussian assumption. The definition of f in Eq. (1) ensures that the same weight factor is
applicable to the gradient of the cost function, which controls the influence of the observations in the
analysis. Figure 5b shows W for the three distributions discussed, as function of departures normalised
by the observation error standard deviation, σo. Near the centre of the distribution both the Huber norm
distribution and the ”Gaussian plus flat” distribution follow a Gaussian distribution, i.e. W = 1.

It can be seen that the ”Gaussian plus flat” distribution has a narrow transition zone of weights from one
to zero, whereas the Huber norm has a broad transition zone. For medium-sized departures the Huber
norm reduces the weight of the observations and for large departures the weight is significantly higher.

A major benefit of the Huber norm approach is that it enables a significant relaxation of the background
QC. With the previous QC implementation, rather strict limits were applied for the background QC, with
rejection threshold values of the order of 5 standard deviations of the normalised departure values. For the
implementation of the Huber norm this has been relaxed considerably, as discussed in section 6.6. This
is especially beneficial for extreme events, e.g., where an intensity difference or a small displacement of
the background fields can lead to very large departures. Examples of this will be shown in section 7.

6.2 Retuning of observation error

The quality of each observation type is quantified by σo, the observation error standard deviation. While
implementing the new variational quality control scheme a retuning of σo was done with the guidance
from estimated observation errors [Desroziers et al. (2005)]. This led to changes in the observation errors
for radiosonde temperature measurements in high altitudes (above 200hPa, see Figure 6 where the used

Technical Memorandum No. 744 11
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Huber norm quality control

DiffAN = 5.6 hPa
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RRKF – A good idea that didn’t work out

from: Courtier 1993: ”Introduction to Numerical Weather Prediction Data
Assimilation Methods”, proc. ECMWF/EUMETSAT Seminar on Developments in the Use of Satellite Data in

Numerical Weather Prediction, 6-10 September 1993.
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The Reduced-Rank Kalman Filter

The main ideas behind the RRKF were:

Approximation of the Hessian [J ′′ = (Pa)−1] based on eigenvectors
and eigenvalues calculated using a Lanczos algorithm.

Use of the eigenvalues and eigenvectors to precondition the
minimization.

Use of the Shermann-Morrison-Woodbury formula to invert the
approximation to get Pa.

Randomization to produce samples drawn from N (0,Pa).

All these ideas proved useful individually, and still form core parts of the
ECMWF DA system (and other systems), even though the RRKF as a
whole failed to live up to expectations.
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The Reduced-Rank Kalman Filter

For example, work on the Lanczos algorithm lead to CONGRAD:

Still a widely used (and very efficient) minimization method for
3D/4D-Var.

Generates eigenpairs for free while it minimizes

Eigenpairs are very useful diagnostics (particularly in cases of slow or
non-convergence)

Allows an efficient spectral preconditioner to be built during the first
incremental minimization without additional effort

Allows information content to be calculated with strict mathematical
bounds (Golub and Meurant 1993)

Although not the full RRKF, a method for cycling background errors came
out of the RRKF work. The method was used at ECMWF between 1996
and 2005.
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The Reduced-Rank Kalman Filter

Fisher 1998, proc ECMWF Seminar
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The Reduced-Rank Kalman Filter

Why did RRKF fail?

The main problem is that the RRKF relies on generating a small subspace
that contains a significant amount of analysis error.

A reasonable fraction of forecast error can be captured in this way (e.g.
Martin Leutbecher’s talk).

But the spectrum of analysis error is flat:

  Moreover, initial-time SVs are very sensitive to the choice of initial-time
metric. In principle, we should use the analysis error covariance matrix to
define the metric, but we don’t know it well enough.

In addition, we didn’t know about localization in the early 1990s...
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Discussion

This has been my selection of a few of the significant developments (and
failures) over the past 20 years.

What would be on your list?

What will be on the list 20 years from now?
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